Jump to content
GIGN Forum

Atrodi Īsto


Sebis
 Share

Recommended Posts

  • Replies 58
  • Created
  • Last Reply

Top Posters In This Topic

Man nX virkne bij pa grūtu, bet n0r3k tiešām baigi gudrais. Iespējams viņā slepjas mūžīgā dzineja atbilde. :P

Še daži diezgan forši.

1)Dazos menesos ir 30 dienas dazos 31. Cik menesos ir 28 dienas?

2)Dakteris tev iedod 3 tabletes un piekodina dzert 1 katru pus stundu. Cik ilgam laikam pietiks so tablesu?

3)Es devos gulet astonos vakara , uzvilku pulksteni un uzstadiju zvanu uz deviniem rita. Cik stundas es pavadisu miega , pirms mani uzmodinas pulkstena zvans?

4)Fermerim ir 17 aitas . visas, iznemot 9 nomira. Cik aitas fermerim palika dzivas?

5)Ja tev ir tikai viens serkocins un tu ieej tumsa un auksta istaba, kura atrodas krasns, ellas lampa un svece ? ko tu aizdegsi pirmo?

6)Virs uzbuve maju, kurai sienas izvietotas taisnstura forma un visas ir verstas pret dienvidiem. Uz majas pusi nak lacis. Kada krasa ir lacis?

7)Uz galda stav 3 aboli. Panem 2 abolus. Cik tev ir abolu tagad?

8)Cik dzivnieku no katras sugas panema skirsta Mozus?

9)Tu vadi autobusu, kurs brauc uz Ventspili, vedot 43 cilvekus un Jurmala iekapj vel 7, bet izkapj 5, Tukuma izkapj 8 un iekapj 4, un autobuss pienak galapunkta ar 30 min. nokavesanos ? ka sauc autobusa vaditaju?

10)Izdali 30 ar vienu pusi un pieskaiti 10. Cik sanaca?

Link to comment
Share on other sites

1)

A high school has a strange principal. On the first day, he has his students perform an odd opening day ceremony:

There are one thousand lockers and one thousand students in the school. The principal asks the first student to go to every locker and open it. Then he has the second student go to every second locker and close it. The third goes to every third locker and, if it is closed, he opens it, and if it is open, he closes it. The fourth student does this to every fourth locker, and so on. After the process is completed with the thousandth student, how many lockers are open?

2)

What are the next numbers in the following sequences?

a: 77, 143, 221, 323, 437 | solved by Dr. Pain

b: 1, 5, 32, 288, 3413

c: 827, 23, 11, 6, 3 | solved by duplets

d: 2, 3, 5, 11, 31

e: 100, 121, 144, 202, 244

Link to comment
Share on other sites

Cik nu es uz ātro pārskēju pāri, vairāk slinkums čakarēties...

2) c) nākamais būs 5

Atrisinājums: vnk vajag mācēt angliski rakstīt skaitļus un skaitīt.

827 - Eight hundred twenty seven ( 23 burti )

23 - Twenty three - ( 11 burti )

11 - Eleven - ( 6 burti )

6 - Six - (3 burti )

3 - Three - ( 5 burti, tātad nākamais būs 5 )

Edited by duplets
Link to comment
Share on other sites

d) 151?

Un par to direktoru. Isti precizi nezinu. Uz papiira sazimeju 30 skapishus, un izskatas, ka valja paliek tie, no kuru kartas skaitlja var izvilkt kvadratsakni (feins teikums). Cik tadu ir lidz tukstotim nezinu, bet skjiet, ka ta pareiza atbilde varetu but 31(?). Nezinu, cik tas ir preciizi, jo vairak par 30 skapishiem uz lapas negribu ziimeet. :D

Edited by mephisto
Link to comment
Share on other sites

Nav vis tā :D

Hint : ievērojam, ka D visi ir pirmskaitļi

Solution : 2,3,5,11,31,127 2 ir pirmais pirmskaitlis, 3 ir otrais, 5 ir trešais, 11 ir piektais, 31 ir vienpadsmitais 127 ir trīsdesmit pirmais pirmskaitlis

Pats ar nevarēju izdomāt, kaut gan visai vienkārši :(

Link to comment
Share on other sites

Šim ir diez gan interesants risinājums. Un bļed, nebojājiet sev un man prieku, meklējot googlē. Šis ir tas topiks, uz kuru atbildes googlee meklēt nedrīkst. Domā, jūs šeit nepazīst ? :D

Note, this problem was featured on an episode of Columbo, though it is older than that. You see 10 sacks of gold coins, all in a row. Actually, only one of the sacks contains true gold coins; the other 9 sacks are counterfeit. Their coins are gold plated, and look the same, but are almost worthless. You must identify the sack of pure gold coins.

A pure gold coin weighs 2 ounces, while a gold plated copper coin only weighs 1 ounce. You have a scale, and are permitted exactly one weighing. You might take a coin from bag number 7 and weigh it. If it reads 2 ounces you've found the gold, but if it reads just 1 ounce, the gold coins are in one of the other 9 sacks. How can you find the sack of gold coins with just one weighing?

Link to comment
Share on other sites

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now
 Share


×
×
  • Create New...